[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA]

The Thermodynamic Properties and Molecular Structure of Cyclopentene and Cyclohexene¹

By C. W. BECKETT,² N. K. FREEMAN³ AND KENNETH S. PITZER⁴

The molecules cyclopentene and cyclohexene have been studied by methods which followed naturally from earlier work on cyclopentane⁵ and cyclohexane.⁶ The potential energy relationships for bond bending and twisting (internal rotation) were transferred from the most analogous molecules where they are known and are used to deduce the equilibrium configurations of these slightly strained⁷ ring molecules. With the aid of these results and the vibrational spectra the thermodynamic properties are correlated and extended by calculation to other functions and temperatures.

Cyclopentene. Structure.—The torsional forces about a double bond are so much larger than those about single bonds as to justify the assumption of planarity for four of the five carbon atoms of cyclopentene. These are atoms 1 to 4 in the diagram. However, if atom 5 is also

in this plane, bonds 1–5 and 4–5 are at the maximum torsional energy since the methylene hydrogens are in opposed configuration. Therefore, we calculated the total potential or strain energy of cyclopentene as a function of the distance, Z, of carbon atom 5 from the plane of the other four. The C–C–C angles were adjusted to optimum values for each assumed value of Z.

The various potential constants employed are as follows: C-C-C and C=C-C angle bending, $k = 1.0 \times 10^{-11} \text{ ergs/radian}^2$ (a rounded average of values from various molecules); twist of 1-5 and 4-5 bonds, $V_0 = 2800 \text{ cal./mole}$ from ethane (and used for cyclopentane); twist of 1-2 and 3-4 bonds, $V_0 = 1950 \text{ cal./mole}$ from propylene.⁸

The final formula is, then, in kcal./mole

 $V = 0.022[2(\alpha_1 - 109.5)^2 + 2(\alpha_2 - 120)^2 + (\alpha_5 - 100.5)^2]$

(1) This research was supported by the American Petroleum Institute under Research Project 44 at the National Bureau of Standards and the University of California.

(2) Research Associate, Project 44 of the American Petroleum Institute.

(3) Research Assistant, Project 44 of the American Petroleum Institute.

(4) Associate Director of Project 44 of the American Petroleum Institute and Professor of Chemistry, University of California.

(5) J. E. Kilpatrick, K. S. Pitzer and R. Spitzer, THIS JOURNAL, 9, 2483 (1947).

(6) C. W. Beckett, K. S. Pitzer and R. Spitzer, *ibid.*, **69**, 2488 (1947).

(7) K. S. Pitzer, Science, 101, 672 (1945).

(8) Note that the cis-2-butene potential barrier value is not appropriate because hydrogen atoms on the two methyl groups interfere. In cyclopentene these hydrogens are absent and the bonds go instead to the third methylene group.

$$\frac{109.5)^2}{\cos 3(\varphi_{12})} + \frac{1.95[1 - \cos 3\varphi_{12}]}{\cos 3(\varphi_{15} - 60)]} \quad (1)$$

where α_1 is the skeletal bond angle at carbon 1, etc., and φ_{12} and φ_{15} are the twist angles about bonds 1-2 and 1-5. The latter are measured with respect to deviation from the planar configuration. It should be observed that in the planar structure the hydrogens about bond 1-2 are staggered, giving a potential minimum for torsion, whereas the hydrogens about bond 1-5 are opposed, giving a maximum. The difference in form of the terms in the potential function for these bonds is a consequence of this fact.

The symmetry of atoms 1 and 4 and of 2 and 3 is considered in the formula. The bond distances C-C, 1.54 Å. and C=C, 1.35 Å. were assumed.

Figure 1 shows the resulting potential energy as a function of Z. The various α 's and φ 's were adjusted, so far as the geometry allows, to minimize the energy for each Z value. Since there is some uncertainty as to the correctness of the potential constants, one should not regard the slight potential drop from Z = 0 to Z = 0.22 Å. as significant. However, one can conclude that, within the magnitude of thermal energy at room temperature, the potential energy of cyclopentene is unchanged by puckering atom 5 out of the plane by any amount up to about 0.3 Å. For the purpose of statistical mechanical calculation this potential function was expressed as

$$V(Z) = \begin{cases} O & |Z| < a \\ b(|Z| - a)^2 & |Z| > a \end{cases}$$
(2)

This function is shown dotted in Fig. 1 with a = 0.277 Å. and b = 17.25 kcal./mol Å²., and is seen to approximate the solid curve rather well.

Cyclopentene. Vibration Spectrum.—The Raman spectrum of cyclopentene was taken from the work of Reitz,⁹ which is in good agreement with earlier studies.

The infrared spectrum has been observed by several laboratories in the 3 to 15 micron range¹⁰ and by the Shell Development Company from 15 to 24 microns.¹¹

The various bands were assigned on the assumption of an average symmetry of C_{2v} and with full consideration of the corresponding frequencies in related molecules. The result is given in Table I. While this assignment is far from certain in every detail, it seems probably correct for the

(9) A. W. Reitz, Z. physik. Chem., B33, 179 (1936).

(10) Catalog of Infra-red Spectrograms issued by the American Petroleum Institute Research Project 44 at the National Bureau of Standards, Serial Nos. 200 and 456 from the Shell Development Company and 362 from the Socony-Vacuum Oil Company.

(11) Private communication from the Spectroscopic Department of the Shell Development Company.

Where values are given in p	parentheses, these are are gives the number of i	verage observed or n modes assumed to ha	nerely expected values.	The second parenthesis
Sym. class	A1	A ₂	B ₁	B ₂
Selection rules	Ra., I. R.	Ra.	Ra, IR	Ra, IR
Ring bending	607 Ra, IR	386 Ra-	a	717—IR
C-H rocking		1020 Ra-	696—IR	• • • • • • • • • • • • •
CH ₂ rocking		935 Ra-	1046—IR	
			1143—IR	
C-C stretching	900 Ra, IR	· · · • • • • •		975—Ra, IR
	1104 Ra			1129—IR
C-H wagging	1287 Ra, IR		· · · · · · · · · · ·	1352IR
CH ₂ wagging	1208 ?, IR	· · · · · · · ·		1201R ?
				1300 ? IR
CH ₂ twisting		(1330) (2)	(1330) (1)	
CH ₂ bending	1437 Ra?	•••••		1445 ?, IR
	1462 Ra, IR			
C==C stretching	1623 Ra, IR			
C-H str. (olefinic)	3060 Ra, IR	· · · · · · · · ·	· · · · • • • •	3060 Ra, IR
C-H str. (CH_2)	(2950) (2)	(2950)	(2950) (2)	(2950)
^a This is the ring puckeri	ng motion whose potent	ial is shown in Fig.	1.	

thermodynamically important low frequencies and statistically correct for the higher frequencies.

Fig. 1.—Total strain energy as a function of the out of plane distance of apical carbon atom. Solid line is calculated curve; dotted line, approximation employed for thermodynamic calculations.

Cyclopentene. Thermodynamics.—The entropy of cyclopentene, liquid, is 48.10 cal./deg. mole at 298.16°K. from the experiments of Huffman and collaborators,¹² while the entropy of vaporization¹⁸ to the ideal gas at that temperature is 21.13 cal./deg. mole. This gives an experimental value for the ideal gas entropy of 69.23 cal./deg. mole at 298.16°K.

The moments of inertia of cyclopentene, with

- (12) H. M. Huffman, private communicaton.
- (13) F. D. Rossini, private communication.

the dimensions given above, are 11.53, 11.87 and 21.80, all $\times 10^{-39}$ g. cm.².

Using these values, and the vibrational assignment given above, one calculates 65.13 cal./deg. mole for the entropy, excepting the peculiar ring puckering motion. This leaves 4.10 cal./deg. mole for that motion.

Thermodynamic functions are readily calculated (see Appendix I) for the potential energy of eqn. 2 on the classical mechanical basis. For heavy particles and a low effective frequency the quantum mechanical effects will be negligible. However, to make the entropy calculations entirely theoretical an effective reduced mass of the ring puckering motion is needed. Since the calculation of this mass would be quite laborious and would contribute relatively little in view of other approximations already made, we merely solved

TABLE II

CYCLOPENTENE, THERMODYNAMIC FUNCTIONS (Units: cal. per degree mole)

	(oma, cal, per degree more)				
	$(H^0 - H^0_0)$		$-(F^0 - H_0^0)$		
<i>Т</i> , °К.	T	C	T	50	
200	9.97	1 2 .33	53.37	63.34	
298.16	11.61	17.95	57.62	69.23	
300	11.65	18.08	57.69	69.34	
400	14.12	25.08	61.37	75.49	
500	16.98	31.62	64.82	81.80	
600	19.90	37.19	68.18	88.08	
700	22.71	41.86	71.46	94.17	
800	25.36	45.78	74.67	100.03	
900	27.82	49.11	77.80	105.62	
.000	30.09	51.94	80.85	110.94	
100	32.19	54.37	83.81	116.00	
.200	34.13	56.45	86.70	120.83	
.300	35.92	58.24	89.50	125.42	
400	37.57	59.79	92. 23	129.80	
500	39 ,10	61.13	94.87	1 3 3.97	

TABLE I VIBRATIONAL SPECTRUM OF CYCLOPENTENE

 C_{2x} symmetry assumed

for the effective mass that gives agreement with the above entropy contribution. This gives 20.6 in atomic weight units which is not unreasonable for a methylene group type of motion.

Using all of the above data, the thermodynamic properties of cyclopentene in the ideal gas state were computed by the usual statistical mechanical formulas and are given in Table II. Although the second decimal place is given, the uncertainty is several tenths of a unit in these results.

Cyclohexene. Structure.—Cyclohexene, like cyclohexane,⁶ probably has one predominant configuration and various higher energy forms which may affect thermal properties. The most stable form, as suggested earlier by Lister,¹⁴ appears to be a configuration having C₂ symmetry and to be slightly strained.⁷ Using bond distances, force constants, etc., described above for cyclopentene this strain energy was found to be about 1.6 kcal./ mole; whereas the energy of another form, which resembles the cyclohexane boat, was calculated as 3.8 kcal./mole. Since these calculations are subject to considerable error we shall evaluate the exact potential energy difference, ΔV , between the tautomers from the thermal data. Taking into account both symmetry numbers and also d, l forms, one obtains the equation

$$Q(\text{taut}) = 1 + \exp(-\Delta V/RT)$$

for the tautomerism factor in the partition function. This is analogous to the chair-boat tautomerism of cyclohexane.⁶

Cyclohexene. Vibration Spectrum.—By comparing the observed Raman and infrared spectra¹⁶ of cyclohexene with the spectra of cyclohexane⁶ and of various olefins¹⁶ a rough correspondence between the frequencies of these related compounds was observed. A tentative list of frequencies is given in Table III which is suitable for the estimation of thermal properties. The distribution of frequencies is approximately right. The list, however, has only a rather dubious plausibility as a detailed assignment.

Cyclohexene. Thermodynamics.—The entropy of cyclohexene in the liquid state has been measured by Huffman and co-workers¹² to be 51.67 cal./deg. mole at 298.16°K. while the entropy of vaporization to the ideal gas is given by Rossini¹³ as 22.53 cal./deg. mole at 298.16°K. This yields the total, 74.20 cal./deg. mole, as the entropy of cyclohexene ideal gas at 298.16°K. In addition, the heat capacity of gaseous cyclohexene has been measured by Montgomery and

(14) M. W. Lister, This Journal, 63, 143 (1941).

(15) K. W. F. Kohlrausch and R. Seka, *Ber.*, **69**, 729 (1936); F. F. Cleveland, *J. Chem. Physics*, **11**, 301 (1943); Catalog of Infrared Spectrograms issued by the American Petroleum Institute Research Project 44 at the National Bureau of Standards, Serial No. 201 from the Shell Development Company and No. 697 from the National Bureau of Standards, Radiometry Section. Also private communication from the Spectroscopic Department of the Shell Development Company.

(16) J. E. Kilpatrick and K. S. Pitzer, J. Research Natl. Bur. Standards, 37, 163 (1946).

DeVries¹⁷ in the range near 400°K. The interpolated value from their data for 400°K. is 34.65 cal./deg. mole. Both of these quantities were calculated statistically for the low energy tautomer alone, using the value 11,260 $\times 10^{-117}$ g.³ cm.⁶ for the product of the principal moments of inertia. The resulting entropy value, 74.16 cal./deg. mole, agrees well with experiment, but the heat capacity is at variance by 0.73 cal./deg. mole. When the tautomerism is introduced, it is found that a potential energy difference between the tautomers of 2700 cal./mole accounts for the discrepancy in the heat capacity without seriously

Cyclohexene Vibration Frequency Assignment

Raman	Cyclohex Infrared	ene Assigned	Cyclo- hexane	cis-2- Butene
19 0		190	231(2)	
281		281	~ ~ ~	
394		394	382	
451	456	456	426(2)	
492		492		
642	645	642	522	
	67 0	670		673
715	719	715		
	810	810	802 (3)	
823		823		
875	876	875	864(2)	
904	9 04	904		
	917	917	903	
966	966	966	1030 (5)	
	1008	1008		
	1037	1035		
1047		1047		
1066	1062	1066		1050
1138	1138	1138	1155	
1219	1220	1219	1176	
	1241	1241	1185	
1246		1246	1261(2)	
1267	1266	1267	1266 (2)	1267
	1307	1307	1308	
	1323	1323	1346(2)	
	1340	1340	1348(2)	
1350	1351	1351	1375	
1431	1437	1435(2)	1443 (3)	1390
1454		1454(2)	1456 (3)	
1651	1649	1648		1672
		2950 (10)		

disturbing the entropy agreement. Including tautomerism, with $\Delta V = 2700$ cal./mole, the calculated entropy becomes 74.27 cal./deg. mole, and the heat capacity, 34.64 cal./deg. mole. While this ΔV is slightly higher than the estimate from strain considerations, it must be granted that the latter is only a rough approximation, and the difference is therefore of no importance.

In Table IV are given the calculated values of various thermodynamic properties of cyclohexene in the ideal gas state and at various temperatures.

(17) J. B. Montgomery and T. DeVries, THIS JOURNAL, 64, 2375 (1942).

As in Table II the uncertainty in these values is several tenths of a unit.

TABLE IV				
Cyclohexene, Thermodynamic Functions				
	(Units:	cal./degr	ee mole)	
	$(H^0 - H_0^0)$		$-(F^0 - H_0^0)$	
<i>T</i> , °K.	T	Cop	T	S°
200	10.75	16.32	55.43	66.18
298.16	13.98	25.10	60.29	74.27
300	14.05	25.28	60.38	74.43
400	18.04	34.64	64.96	83.00
500	22.20	42.78	69.43	91.63
600	26.20	49.45	73.84	100.04
700	29.93	54.92	78.16	108.09
800	33.35	59.49	82.38	115.73
900	36.47	63.34	86.49	122.96
1000	39.33	66.62	90.48	129.81
1100	41.94	69.43	94.36	136.30
1 2 00	44.34	71.85	98.12	142.46
130 0	46.53	73.92	101.75	148.28
1400	48.55	75.72	105.27	153.82
1500	50.42	77.27	108.68	159.10

Appendix I

In order to calculate thermodynamic functions for the mode of oscillation with potential energy given by equation (2) above, the partition function is needed

$$Q = \frac{(2\pi m k T)^{1/2}}{h} \int_{-\infty}^{+\infty} e^{-V(Z)/kT} dZ \qquad (3)$$

On integration the result is

$$Q = \frac{(2\pi m k T)^{1/2}}{h} \left[2a + (\pi k T/b)^{1/2} \right]$$
(4)

Let us define $y = 2a(b/\pi kT)^{1/2}$, in terms of which the thermodynamic functions may be written as

$$\frac{-(F - H_0)}{T} = R \left[\ln \frac{2a(2\pi mk)^{1/\epsilon}}{h} + \frac{1}{2}\ln T + \ln\left(1 + \frac{1}{y}\right) \right]$$
$$\frac{H - H_0}{T} = \frac{R}{2} \left[\frac{2 + y}{1 + y} \right]$$
$$C = R \left[\frac{1}{2} + \frac{3}{4(1 + y)} - \frac{1}{4(1 + y)^2} \right]$$

Summary

By the use of bond bending and bond twisting (internal rotation) potential constants from related molecules the potential or strain energy of cyclopentene and cyclohexene was calculated for various configurations. It was found that cyclopentene can pucker by moving the carbon opposite to the double bond out of the plane of the other four carbon atoms by about 0.3 Å. without significant change in energy from the planar configuration. Cyclohexene, by contrast, shows two tautomeric forms related to chair and boat cyclohexane which differ by about 2.7 kcal./mole.

The available Raman and infrared spectroscopic data are interpreted for cyclopentene and cyclohexene. With reasonable adjustments of otherwise somewhat uncertain parameters, agreement is obtained with the thermodynamic data for the two substances. The thermodynamic functions $(-(F^0 - H_0^0)/T, (H^0 - H_0^0)/T, S^0 \text{ and } C_p^0)$ are then calculated for the ideal gas state from 200 to 1500° K.

BERKELEY, CALIFORNIA

RECEIVED AUGUST 7, 1948

[CONTRIBUTION FROM THE NOVES CHEMICAL LABORATORY, UNIVERSITY OF ILLINOIS]

Amine Exchange Reactions of Mannich Bases

By H. R. SNYDER AND JAMES H. BREWSTER¹

Amine exchange reactions occur when quaternary ammonium salts are heated with ammonia or primary or secondary amines² (eqn. A1). Similar reactions have been observed with Mannich bases of nitromethane³ and of indole⁴ (eqn. B1); the phenylhydrazones of ketonic Mannich bases form pyrazolines by internal amine exchange⁵ (eqn. C).

(1) Present address: Department of Chemistry, University of Chicago, Chicago, Illinois.

(2) Scholtz, Ber., 24, 2402 (1891); 31, 414, 1700 (1898); von Braun and Zobel, Ann., 445, 247 (1925); Ber., 59, 1786 (1926); von Braun, Kuhn and Goll, *ibid.*, 59, 2330 (1926); Hultquist, et al., THIS JOURNAL, 70, 23 (1948).

(3) Duden, Bock and Reid, Ber., 38, 2036 (1905).

(4) Howe, Zambito, Snyder and Tishler, THIS JOURNAL, 67, 38 (1945).

(5) Mannich and Bauroth, Ber., 57, 1108 (1924); Nisbet and Gray, J. Chem. Soc., 839 (1933); Levvy and Nisbet, *ibid.*, 1053, 1572 (1938); Nisbet, *ibid.*, 1237, 1568 (1938); 126 (1945); Harradence and Lions, J. Proc. Roy. Soc. N. S. Wales, 78, 14 (1939) [C. A., 33, 8196 (1939)]. Since these reactions appear to be similar in their mechanisms to the corresponding amine replacement reactions which occur in alkylations with quaternary salts of benzylamine^{6,7,8} (eqn. A2), and with Mannich bases^{4,8,9} (eqn. B2) and their quaternary salts^{8,10} (eqn. A2), it seemed desirable to determine whether amine exchange reactions occur readily with ketonic and phenolic Mannich bases.

A. 1
$$R' - NR_3 + : B \longrightarrow R'B + : NR_3$$

 $R' = \bigcirc -CH_2 -, CH_3 -, etc.; B = HNR_2''$

(6) von Meyer, Abhandl. math.-phys. Klasse sächs. Akad. Wiss.. 31, 179 (1908) [Chem. Zentr., 30, II, 1800 (1909)].

- (7) Snyder and Speck, THIS JOURNAL, 61, 668, 2895 (1939).
- (8) Snyder, Smith and Stewart, ibid., 66, 200 (1944).
- (9) Mannich, Koch and Borkowsky, Ber., 70, 355 (1937); Reich-
- ert and Posemann, Arch. Pharm., 275, 67 (1937). (10) duFeu, McQuillin and Robinson, J. Chem. Soc., 53 (1937).